Найдите значение выражения

Задание

Найдите значение выражения 7^(1+log7(3))

Решение

Для начала рассмотрим выражение log7(3). Логарифм по основанию 7 от 3 можно интерпретировать как степень, в которую нужно возвести основание (7), чтобы получить аргумент (3). То есть, log7(3) = x означает, что 7^x = 3.

Теперь выражение 7^(1+log7(3)) можно переписать как 7^1 * 7^log7(3). Здесь 7^1 = 7, так как любое число, возведенное в степень 1, равно самому себе.

Таким образом, выражение принимает вид 7 * 7^log7(3). Но мы знаем, что 7^log7(3) = 3, так как log7(3) = x, то есть 7^x = 3.

Итак, у нас получается 7 * 3 = 21.

Таким образом, значение выражения 7^(1+log7(3)) равно 21.

Оцените статью
ФизМат
Добавить комментарий